

NuMI Beam Simulation -the reunification

Robert Hatcher Fermilab Computing Division

NuMI Beam Mtg 2012-10-03

Revisiting the plan for a unified ntuple!

Geant 4

- Proposal: MINOS-DocDB-9070 (via https using cert)
 - initial version publicly visible on 2012-05-02
 - accompanying talk MINOS-DocDB-9084 (via https using cert)
 - a copy of which is included in this document
 - yesterday I changed access from "beamrw" to "public"
- Almost no progress since...
- Some proposed revisions
 - expanded on metadata ntuple
 - needs to be regularized w/ Luke's SAM info efforts
 - improved the example code
 - simplify beam "locations"
 - externalize/centralize reweight function & location handling

Restructuring the unified ntuple

Geant 4

- grouping might make relations clearer
- This allows encapsulation of elements needed for location reweighting:

- ntype
 - ptype
 - VX, VY, VZ
 - pdpx, pdpy, pdpz
 - necm
 - ppenergy
 - ppdxdz, ppdydz, pppz
 - mupare
 - muparpx, muparpy, muparpz

Location, location, location

Geant 4

- NOVA
- STL vectors: nupx, nupy, nupz, nuenergy, nuwgt

still in beam coordinate system and units

- does it make sense to have more than just energy & weight?
 - possibly for near; repetitive for far
 - old entries had dx/dz and dy/dz (in beam frame)
 - new set is easier to use at cost of 1 more value per location
- standard indices (but tagged for specifics in metadata)

0: random decay

1: MINOS NearDet

2: MINOS FarDet

3: Minerva

?: ArgoNeut

4: NOVA NDOS

5: NOvA NearDet

6: NOvA FarDet

7: LBNE Soudan

8: LBNE AshRiver

9: LBNE Lead Surface

10: LBNE Lead Underground

Standardize handling

Geant 4

Common functions to do common things

- function for reading a text file of (x,y,z,name) quartet lines
 - returns the vectors for the metadata (or directly fill dkmeta elements)
- same vectors used to calculate the array of energies/weights
- agreed upon function for calculating the weights
 - everyone uses it, fixes go in one place

Create a CVS repository to hold

- dk2nu.h + dk2nu.cc = basic tree
- dkmeta.h + dkmeta.cc = meta-data tree
- readWeightLocations.C = parsing text file to vectors (dkmeta)
- calcLocationWeights.C = fill dk2nu non-random location info
- test programs

Previous Talk (2012-05-03) follows

• Slides redux...

Tale of N_(N>2) Cities

Geant 4 • The code has been "forked" a number of times

- each time w/ a loss of prior CVS history
- corrections to common code apply to each repository
- Output Ntuple formats are inconsistent
 - trouble from the start: gnumi, g4numi, flugg
 - different names, types, capitalizations
 - variants of each of these make additional changes
 - core elements are the same
 - GENIE was coded to handle the original 3
 - Minerva hacked GENIE to handle their variant
 - near impossible to continue along same road in the future

Codebase

Geant 4 •

- Ideally, the code would get merged back into a single repository and experiments would use CVS (SVN, whatever) branches to handle alternatives
- if the objection is the repository location then we could start a new completely expt agnostic one
- would allow easier common fixes and re-integration
- BIG job to do it in the ideal manner
 - Robert just goes to his cubical and weeps every time he thinks about this task
- Put this on hold for now...

Output Format

Geant 4 • This is the pressing issue ...

experiments need some of the new features

• ...having a single format just makes life easier

Proposal MINOS-DocDB-9070

- currently still evolving example code in document!
- general agreement on principles
- a tree of "dk2nu" class objects
 - represent hadron/muon that decays to a neutrino
 - class is roughly a union of all existing elements
- a tree of "dkmeta" class objects for metadata
 - name choice? tree or just one object in the file?

General Principals

Geant 4 • Naming

- new name for tree dk2nu (dkmeta)
- standardized variable names all lower case
- no truncation of variable names: ndxdznear, not NdxdzNea
- Everyone uses a versioned class header
 - additional info can be stored in parallel branches on the tree, but otherwise no unagreed upon changes
 - variables are ints, doubles, strings, vectors
 - no fixed sized arrays
 - class supplies a Clear() method to assign defaults

General Principals

Geant 4 • Biggest addition: ancestor chain

- concept from Minerva g4numi variant (w/ mods)
- one entry per state between proton and neutrino
 - [0] = the initial proton; [n-1] = the final neutrino
- record
 - PDG code
 - starting & final momentum ...
 - starting position
 - don't need final position; stop[j] = start[j+1]
 - other info up for debate

Moving Forward

Geant 4 • Move simulations adiabatically

- uses hbook/zebra ntuples hard to convert
- GENIE will retain ability to read 3 legacy formats

g4numi & flugg

- relatively easy to adjust to write new format
 - variable names mostly
- initially leave new (for that type) variables unfilled
- metadata filling is the most new code

flugg: rework code

- convert text-to-ntuple script to compiled ACLiC code
 - straightforward for the most part
- priority: add filling ancestor chain
 - necessary hadron production reweighting

Use In GENIE

Geant 4 • GNuMIFlux ⇒ GDk2NuFlux

- no longer NuMI specific: LBNE, hopefully Booster too
- dk2nu class constitutes "passthrough" info
 - store this in expt's data structures "as is" if desired
 - need to explore potential ROOT dictionary clash
 - copy in GENIE & expt framework (each can be used independently)
 - use of STL vector makes this better than fixed arrays because of copy mechanism (no explicit loop written by user)

Timeline

Geant 4 • Hopefully soon!

• mid-summer?

Beam Simulation

Geant 4 • Common Ntuple format

- gnumi (geant3, obsolete)
- flugg (g4+fluka, incomplete)
- g4numi (+ minerva + lbne variants)
- Shared location for nonexpt specific files
- Common mechanism for converting to GSimpleNtpFlux format
 - samples weighted files into form with unweighted rays
 - factorize computation speeds up actual generation
- Merge codebase back to one repository
 - snapshots taken at various times means history was lost, but fixes need to get propagated to multiple repositories
 - experiment based branches from common code allows desired flexibility

- Re-work flugg handling of alternatives
 - use run-time switches, not code recompilation
- Evolve flugg for full ancestor list
 - currently doesn't have all particles between initial proton and particle that decayed to give the neutrino
 - can't apply NA59/NA61 weights
- Physics choices
 - Geant4 PhysicsList alternatives
 - flugg fluka version (2011)
- Incorporation of external knowledge
 - NA49/NA61
 - cross expt hadron re-weighting
 - SKZP works for MINOS but not NOvA
 - revisit muon/hadron monitors?